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A New Approach for Personal Identification Based on dVCG

Jong Shill LEE•õ, Baek.Hwan CHO•õ, Young Joon CHEE•õ, Nonmembers,

In Young KIM•õ*a), Member, and Sun I. KIM•õ, Nonmember

SUMMARY We propose a new approach to personal identification us-

ing derived vectorcardiogram (dVCG). The dVCG was calculated from 

recorded ECG using inverse Dower transform. Twenty-one features were 

extracted from the resulting dVCG. To analyze the effect of each feature 

and to improve efficiency while maintaining the performance, we per-

formed feature selection using the Relief-F algorithm using these 21 fea-

tures. Each set of the eight highest ranked features and all 21 features were 

used in SVM learning and in tests, respectively. The classification accu-

racy using the entire feature set was 99.53%. However, using only the 

eight highest ranked features, the classification accuracy was 99.07%, in-

dicating only a 0.46% decrease in accuracy compared with the accuracy 

achieved using the entire feature set. Using only the eight highest ranked 

features, the conventional ECG method resulted in a 93% recognition rate, 

whereas our method achieved>99% recognition rate, over 6% higher than 

the conventional ECG method. Our experiments show that it is possible to 

perform a personal identification using only eight features extracted from 

the dVCG.
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1. Introduction

Human identification has potential applications in many dif-

ferent areas where the identity of a person needs to be deter-

mined, and to obtain even higher security levels, more com-

plex system are required. Specific features of human beings 

need to be selected to recognize a person. Much work has 

been carried out on human face identification, voice recog-

nition, palm recognition, and iris recognition. One of the 

problems with these identification methods is the fact that 

a specific biometric belonging to a certain person can still 

be used, even if the owner of the biometric is not present, 

or has even died. Therefore, many biometric hardware sys-

tems include a so-called liveness testing. In most cases, such 

liveness testing is difficult to measure [1], and a better and 

more efficient method to test the •gliveness•h of an applicant's 

biometric is needed.

The electrocardiogram (ECG) signal is an alternative 

inherent liveness biometric because of the significant fact 

that an ECG signal does not exist if the owner is not alive. 

Recently, efforts have been made to exploring the feasibil-

ity of using ECG as a new biometric measure for human 

identification. Biel et al. showed that automated human 

identification can be achieved by analyzing the 30 features 
monitored using a standard 12-lead reset ECG [2]. Shen 
et al. showed that human identity verification was feasible 
by applying template matching and a decision-based neural 
network to the seven features extracted from a single-lead 
ECG [3]. Kyoso et al. developed a human identification en-

gine based on the four feature parameters of an ECG data 
sequence sampled on a beat-to-beat basis [4]. All of these 
researchers used time intervals (e.g., P wave duration, PQ 
interval, QRS interval, and QT interval) and amplitude in 
their studies. These temporal features (i.e., interval and am-

plitude) can vary depending on variables such as the time 
of day of the measurement or the physical condition of the 
subject. Noise and positioning of the electrode can also 
decrease the accuracy. In contrast, the spatial features of 
the cardiac electrical vector, represented by the vectorcar-
diogram (VCG) are not affected by the variables mentioned 
above. It is also expected that the vectorcardiographic loops 
will differ in shape and orientation from person to person. 
Therefore, it is possible to identify a person by features ex-
tracted from VCG.

In this work, we investigated a new approach for iden-
tifying humans using VCG. Firstly, we extracted 21 fea-
tures from the derived vectorcardiogram (dVCG). Because 
it takes impractical time for personal identification to use all 
21 features and there are some redundant features that do not 
contribute to the classification performance, we adopted the 
Relief-F algorithm to improve the computational efficiency 
and remove possible redundant features. Finally, we per-
formed personal identification using a Support Vector Ma-
chine (SVM).

2. Materials and Methods

2.1 Data Acquisition

Ten healthy volunteers were enrolled in the study, and a 
standard 12-lead ECG data recording was made for each 
subject. Each recording was 10s long, and was performed 
when the subject was at rest. Data acquisition was carried 
out at a sampling speed of 500 samples per second using a 
CardioTouch (Bionet Co., Korea). The recordings were per-
formed approximately one hundred times for each subject 
over a three-month period.
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2.2 Derived VCG

VCG have been widely investigated in the diagnosis of heart 
diseases, such as atrial fibrillation [5], premature ventricu-
lar contraction [6], and early ventricular repolarization [7]. 
The electrode positions of a Frank lead VCG are different 
from those of a 12-lead ECG, and must first be deduced by 
the recording technicians. Furthermore, using a Frank lead 

VCG in addition to a 12-lead ECG requires two recordings 
instead of one, and consequently increases the cost. There-
fore, a method for calculating VCG from a conventional 12-
lead ECG is more appealing [5], [8].

The derived VCG (dVCG) was calculated from each 
ECG using a method based on inverse Dower matrix [9]. 
Each of the orthogonal leads, X, Y, and Z, used to plot 
the VCG were linear combinations of the eight independent 
leads (I, II, and V1-V6) of a standard 12-lead ECG.

The dVCG in three-dimensional space, showing the 
frontal (XY) plane, the horizontal (XZ) plane, and the sagit-
tal (YZ) plane of a subjects' standard 12-lead ECG is shown 
in Fig. 1. As shown in Fig. 1, the frontal plane provides 
useful information, such as shape and direction, and it is 
less complicated. Therefore, we used the dVCG in three-
dimensional space and the frontal plane. In the frontal (XY) 

plane, the large vector loop (the QRS vector loop) represents 
the QRS complex and the small vector loop (the T vector 
loop) represents the T wave of the ECG. The QRS and T 
vector loops are denoted by the solid and dashed lines in the 
XY plane, respectively.

2.3 Detection of the QRS Complex and T Wave

Detection of QRS complex and the T wave are required to 
calculate separate QRS and T vector loops. To detect the 

QRS complex, we used the QRS detection algorithm devel-
oped by Hamilton and Tompkins [10]. To detect the T wave, 
we used the QRS complex and the magnitude of the dVCG. 
The shape of the magnitude of the dVCG can be segmented 
into QRS and T wave regions. Therefore, we could easily

VCG in addition to a 12-lead ECG requires two recordings 
instead of one, and consequently increases the cost. There-
fore, a method for calculating VCG from a conventional 12-
lead ECG is more appealing [5], [S]. 
   The derived VCG (dVCG) was calculated from each 
ECG using a method based on inverse Dower matrix [9]. 
Each of the orthogonal leads, X, Y, and Z, used to plot 
the VCG were linear combinations of the eight independent 
leads (I, II, and V1-V6) of a standard 12-lead ECG.I 
   The dVCG in three-dimensional space, showing the 
frontal (XY) plane, the horizontal (XZ) plane, and the sagit-
tal (YZ) plane of a subjects' standard 12-lead ECG is shown 
in Fig. 1. As shown in Fig. 1, the frontal plane provides 
useful information, such as shape and direction, and it is 
less complicated. Therefore, we used the dVCG in three-
dimensional space and the frontal plane. In the frontal (XY) 

plane, the large vector loop (the QRS vector loop) represents 
the QRS complex and the small vector loop (the T vector 
loop) represents the T wave of the ECG. The QRS and T 
vector loops are denoted by the solid and dashed lines in the 
XY plane, respectively. 

2.3 Detection of the QRS Complex and T Wave 

Detection of QRS complex and the T wave are required to 
calculate separate QRS and T vector loops. To detect the 

QRS complex, we used the QRS detection algorithm devel-
oped by Hamilton and Tompkins [10]. To detect the T wave, 
we used the QRS complex and the magnitude of the dVCG. 
The shape of the magnitude of the dVCG can be segmented 
into QRS and T wave regions. Therefore, we could easily

Fig. 1 The dVCG which was calculated using inverse Dower transform. 

In the XY plane, the solid and dashed lines denote the QRS and T vector 
loops, respectively.

Table 1 The 21 features extracted from the dVCG.
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separate the T wave interval by excluding the QRS region in 
the magnitude of the dVCG.

2.4 Feature Extraction

Data were acquired from each subject in 10s periods, and 
usually contained 10 or more beats. Since the dVCG data 
taken from all those beats produced similar patterns, the 
average values were taken from each beat's dVCG trace. 
Twenty-one features were extracted from the dVCG data. 
Three features arose from the three-dimensional (3D) space, 
seven came from each QRS vector loop and T vector loop, 
and the others were the differential or proportional values 
obtained from the QRS and T vector loops. These 21 fea-
tures are listed in Table 1.

2.5 Identification Using SVM and Relief-F Algorithm

We performed feature selection using the Relief-F algo-
rithm [14] to reduce the dimensionality and to analyze the 
effect of each feature. We used a linear SVM with a pairwise 
coupling method as a classifier in our experiments [11]-
[13], and compared the 10-fold cross validation accuracy 
by eliminating the lowest-ranked features one-by-one based 
on the Relief-F algorithm. We took advantage of the work 
of Weka [15] and LIBSVM [16] for the Relief-F method and 
SVM learning.

3. Results

To compare our proposed and a conventional ECG method, 
14 features were extracted from the ECG, and these fea-
tures were obtained from a conventional personal identifi-
cation method utilizing the ECG. These features include: 
the PR interval (PRint), the P amplitude (Pamp), the P-wave 
duration (Pdur), the Q amplitude (Qamp), the Q-wave dura-
tion (Qdur), the R amplitude (Ramp), the R-wave duration 

(Rdur), the S amplitude (Samp), the S-wave duration (Sdur), 
the QRS duration (QRSdur), the QRS amplitude (QRSamp), 
the T amplitude (Tamp), the ST amplitude (STamp), and the 

QT interval (QTint). These features are measured by the Car-
dioTouch.

The Relief-F algorithm was applied to these 14 features 
and the results obtained are shown in Table 2. Note that 
the notation w(f) is the output from the Relief-F algorithm, 
which means the relative importance of the features in terms 
of the ability for increasing the inter-class difference and the 
intra-class similarity. The foremost values were the P am-

plitude and QRS amplitude, along with the S amplitude and 
the S duration. We performed a classification using a linear 
SVM employing the pairwise coupling method in our exper-
iments, and compared the 10-fold cross validation accuracy 
by eliminating the lowest-ranked features one-by-one. The 
results are denoted by the dashed line in Fig. 2. The recog-
nition rate using the 14 features was 96.41%, and the rate 
decreased as the number of features decreased. When we 
used eight features, the recognition rate was 93.31%.

The 21 features extracted from the dVCG were ranked 
using the Relief-F algorithm, and are shown in Table 3. The 
highest values were the angle of the maximum peak value 
in the T vector loop and the angle of the major axis in the T 
vector loop. Next were the values of the length and the angle 
of the major axis in the QRS vector loop, followed by the 
length of the minor axis in the QRS vector loop and the size 
of the QRS vector loop. The difference between the size of 
the QRS and T vector loops came next. In the movement of 
the heart, the most dominant factor is the depolarization and 
repolarization of the ventricles. These were reflected in QRS 
and T waves. Because the repolarization takes longer time 
than depolarization, the morphology of T might influence 
more than QRS in classification.

The solid line in Fig. 2 shows that the recognition rates 
obtained using the specific 21 features extracted from the 
dVCG. These were processed using the same method used 
in the ECG personal identification. It shows that a recogni-
tion rate of 99.53% was achieved using all 21 features and 
a recognition rate of 99.07% was achieved using only the 
top eight ranked features. This suggests that by using only 
eight out of the 21 features, we can adequately produce an

Table 2 Rank of the 14 features extracted from the ECG.

Table 3 Rank of the 21 features extracted from the dVCG.
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acceptable recognition rate.

When only eight features were used, the ECG method 

resulted in a recognition rate of approximately 93%, where 

our proposed method achieved a recognition rate of>99%, 

which was over 6% higher than that obtained using the ECG 

method.

To measure the computation time, we implemented al-

gorithms of feature extraction using Microsoft Embedded 

Visual C++(R) on Windows CE(R) (Pocket PC) platform with 

Intel XScale(R) PXA270 Processor. We measured the exe-

cution time by eliminating the lowest-ranked features one-

by-one. The results are denoted by the diamond symbol 

in Fig. 2. It takes time 7,384 ms to extract all 21 features, 

whereas 3,376ms for the eight highest ranked features. The 

results show that the computation time taken to extract the 

eight highest ranked features is much less (47.5%) than that 

is required by extracting all 21 features.

It takes 7,038ms (95.3% of total computation 

time) to extract the four features of QRSmax dist(359ms), 

QRSmin dist(718ms), Tmax dist(2,119ms), Tmin dist(3,842ms) 

(Fig. 2). It is known that the normal adult has the QRS du-

ration of 60•`100ms and T duration is 100•`250ms [17]. 

Therefore number of samples of T loop is 2•`2.5 times than 

that of QRS loop. To calculate the distance of major and 

minor axis from each loop, we have to find the maximum 

distance of each pair of points on the loop. So the computa-

tion time is proportional to the square of number of samples 

of each loop. To calculate Tmax dist and Tmin dist, it takes about 

six times than the time to calculate QRSmax dist, QRSmin dist•E

The time for Tmax dist(2,119ms) was about 6 times of the 

time for QRSmax dist(359ms). However, we already have 

the information for Tmax dist during the calculation process 

of the 2nd ranked feature of Tmax ang, no additional time is 

needed. The computation time for QRSmin dist, Tmin dist has 

similar properties as above. It takes 718ms and 3,842ms for 

QRSmin dist and Tmin dist.

The results in Fig. 2 showed a stable performance until 

the number of features decreased to a specific point, and 

then it decreased rapidly. These results indicate that the 
Relief-F algorithm can rank the features chosen in this study 
approximately.

4. Conclusions

We have studied a new approach for human identification 
using dVCG that can provide the spatial information of 
ECG. To identify a person by their spatial features extracted 
from a dVCG, we used a linear SVM as a classifier and cal-
culated a 10-fold cross validation. The results show that 
by using only eight features, we can adequately produce 
an acceptable recognition rate and that a spatial ECG, such 
as a dVCG, can provide more defining features than those 
obtained using conventional temporal methods. Therefore, 
dVCG may be much more feasible in biometric recognition 
applications.

In this study, the standard 12 leads were used to acquire 
the dVCG, which will be somewhat troublesome to apply in 
the real world. However, the final results suggest that since 
the seven primary features were all taken from the XY plane, 
it may be possible to utilize only three leads instead of 12.

Further studies should include a reduction in the num-
ber of leads, and the stability of the dVCG with changes in 
the subject's various physical conditions, such as during ex-
ercise, drinking, and smoking. If these 21 features are stable 
under such various conditions, then dVCG could be a very 
feasible method to perform personal identification.
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Fig. 2 Classification performance using the extracted features from a 

conventional ECG and the dVCG. And the computation time for the feature 

extraction from the dVCG.
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